Asymptotic Behavior for Discretizations of a Semilinear Parabolic Equation with a Nonlinear Boundary Condition
نویسندگان
چکیده
This paper concerns the study of the numerical approximation for the following initial-boundary value problem: (P) ut = uxx − a|u|p−1u, 0 < x < 1, t > 0, ux(0, t) = 0 ux(1, t) + b|u(1, t)|q−1u(1, t) = 0, t > 0, u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1, where a > 0, b > 0 and q > p > 1. We show that the solution of a semidiscrete form of (P ) goes to zero as t goes to infinity and give its asymptotic behavior. Using some nonstandard schemes, we also prove some estimates of solutions for discrete forms of (P ). Finally, we give some numerical experiments to illustrate our analysis.
منابع مشابه
Some Blow-Up Problems For A Semilinear Parabolic Equation With A Potential
The blow-up rate estimate for the solution to a semilinear parabolic equation ut = ∆u+V (x)|u|p−1u in Ω×(0, T ) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x, 0) = Mφ(x) as M goes to infinity, which have been found in [5], are improved under some reason...
متن کاملBlow-up analysis for a semilinear parabolic equation with nonlinear memory and nonlocal nonlinear boundary condition
In this paper, we consider a semilinear parabolic equation ut = ∆u + u q ∫ t 0 u(x, s)ds, x ∈ Ω, t > 0 with nonlocal nonlinear boundary condition u|∂Ω×(0,+∞) = ∫ Ω φ(x, y)u (y, t)dy and nonnegative initial data, where p, q ≥ 0 and l > 0. The blow-up criteria and the blow-up rate are obtained.
متن کاملSolving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation
The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...
متن کاملRoles of Weight Functions to a Nonlocal Porous Medium Equation with Inner Absorption and Nonlocal Boundary Condition
and Applied Analysis 3 He studied the asymptotic behavior of solutions and found the influence of weight function on the existence of global and blow-up solutions. Wang et al. 10 studied porous medium equation with power form source term ut Δu u, x, t ∈ Ω × 0, ∞ , 1.8 subjected to nonlocal boundary condition 1.2 . By virtue of the method of upper-lower solutions, they obtained global existence,...
متن کاملBlow-up at the Boundary for Degenerate Semilinear Parabolic Equations
This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008